Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Methods Mol Biol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38329617

ABSTRACT

In oncological research, the function of tumor-infiltrating natural killer (NK) cells in skin carcinoma presents a viable avenue for novel therapeutic methods. NK cells are essential to the body's defense against malignancies, including skin cancer, and are especially important in more sophisticated cancer immunotherapies such as vaccinations containing dendritic cells. The deadliest type of skin cancer, malignant melanoma, still has a poor prognosis even with advancements in early-stage therapies, which emphasizes the need for novel therapeutic strategies. NK cells from human melanoma metastases were subjected to single-cell RNA-seq analysis, which demonstrated notable variations in the transcriptional programs of tumor-infiltrating and circulating NK cells. Different transcriptional states are displayed by NK cells that have invaded tumors, indicating that they are functionally specialized in areas like chemokine production and cytotoxicity. These results emphasize the functions of NK cells in recruiting other significant immune cell types, such as cross-presenting dendritic cells, and in direct cytotoxicity against malignant cells. Investigating NK cells that infiltrate tumors in skin carcinomas presents a viable approach to comprehending and may be modifying the immune environment surrounding these cancers. It is essential to comprehend the distinct characteristics and roles of NK cells inside the tumor microenvironment in order to create more potent immunotherapeutic approaches to treat skin cancer. In order to perhaps open the door for new directions in cancer immunotherapy, the project intends to establish a thorough technique for the isolation and thorough phenotypic characterization of tumor-infiltrating NK cells in skin carcinoma.

2.
Methods Mol Biol ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38095836

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC), a non-melanoma skin cancer that is frequently diagnosed, is distinguished by its propensity for aggressive behavior, frequent poor response to standard therapy, and capacity to metastasize to distant areas. Utilizing the body's natural immune defense mechanisms, particularly through the use of chimeric antigen receptor (CAR) technology, is receiving increasing attention in the dynamic field of oncological therapies. Although T cells have received most of the attention, this strategy has proven to be highly effective in battling some blood-related malignancies. However, there are considerable challenges when using this method in the context of solid tumors. The innate immune system's natural killer (NK) cells are essential parts because they have the ability to detect and destroy cancer cells. CAR-NK cells are a very promising approach because they combine the natural cytotoxic properties of natural killer (NK) cells with the precise targeting skills of chimeric antigen receptor (CAR) technology. With the use of this integrated strategy, the intrinsic diversity of cutaneous squamous cell carcinoma (cSCC) tumors may be successfully targeted, increasing treatment effectiveness and lowering the risk of tumor recurrence. This tactic is improved by the development of dual-specificity chimeric antigen receptors (CARs), which fully resolve the antigen presentation heterogeneity among tumor cells. In conclusion, the use of CAR-NK cells that precisely target cSCC-specific antigens has the potential to drastically transform therapy approaches for cSCC as well as other difficult solid tumors as oncological research advances. In order to create chimeric antigen receptor (CAR)-natural killer (NK) cells that particularly target antigens linked to cutaneous squamous cell carcinoma (cSCC), the goal of this protocol is to present a detailed method. The ultimate objective is to lay the groundwork for the development of precision immunotherapy.

3.
Pulm Pharmacol Ther ; 83: 102269, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967760

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a respiratory condition characterized by its heterogeneous nature, progressive course, and significant impact on individuals' quality of life. It is a prevalent global health issue affecting a substantial number of individuals and can pose life-threatening complications if left unmanaged. The development and course of COPD can be influenced by a range of risk factors, including genetic predisposition and environmental exposures. Nevertheless, as researchers adopt a more comprehensive and expansive viewpoint of therapeutic techniques, the associated obstacles become more apparent. Indeed, a definitive medication for COPD that reliably leads to symptom alleviation has not yet been discovered. Therefore, the limitations of conventional therapy methods prompted researchers to focus on the advancement of novel procedures, potentially leading to significant outcomes. In contemporary times, the field of regenerative medicine and cell therapy has presented unprecedented opportunities for the exploration of innovative treatments for COPD, owing to the distinctive attributes exhibited by stem cells. Hence, it is imperative to provide due consideration to preclinical investigations and notable characteristics of stem cells as they serve as a means to comprehensively comprehend the fundamental mechanisms of COPD and uncover novel therapeutic strategies with enhanced efficacy for patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Risk Factors , Stem Cells
4.
Adv Exp Med Biol ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37923882

ABSTRACT

Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.

5.
Methods Mol Biol ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37801255

ABSTRACT

Natural killer (NK) cells are a part of a sophisticated immune system that is necessary for the skin because it is a crucial organ that is continually exposed to environmental influences. Recent studies have shown that NK cell incorporation into three-dimensional (3D) organotypic culture systems for human skin stem cells provides a physiologically relevant environment to study the interactions between immune cells and skin cells, making it a powerful tool for simulating skin diseases and researching these interactions. It has been shown that adding NK cells to 3D organotypic culture systems can improve keratinocyte differentiation and control inflammation in a variety of skin conditions, including psoriasis. In order to increase our knowledge of skin diseases and immune cell interactions, this work intends to propose an optimum approach for adding NK cells to a 3D organotypic culturing system for human skin stem cells. By better comprehending these relationships, researchers hope to develop novel treatments for skin diseases that are more effective and cause fewer side effects than current treatments. To completely understand the mechanisms underlying these interactions and to create new treatments for skin diseases, more research is required. In conclusion, NK cell integration into 3D organotypic culture systems offers a potent tool to investigate immune cell interactions with skin cells in a physiologically appropriate setting, which may result in major improvements in the treatment of skin diseases.

6.
PLoS One ; 18(1): e0279835, 2023.
Article in English | MEDLINE | ID: mdl-36649284

ABSTRACT

BACKGROUND: Identification of metabolomics profile in subjects with different blood pressure, including normal blood pressure, elevated blood pressure, stage 1 hypertension, and stage 2 hypertension, would be a promising strategy to understand the pathogenesis of hypertension. Thus, we conducted this study to investigate the association of plasma acylcarnitines and amino acids with hypertension in a large Iranian population. METHODS: 1200 randomly selected subjects from the national survey on the Surveillance of Risk Factors of Non-Communicable Diseases in Iran (STEPs 2016) were divided into four groups based on the ACC/AHA hypertension criteria: normal blood pressure (n = 293), elevated blood pressure (n = 135), stage 1 hypertension (n = 325), and stage 2 hypertension (n = 447). Plasma concentrations of 30 acylcarnitines and 20 amino acids were measured using a targeted approach with flow-injection tandem mass spectrometry. Univariate and multivariate logistic regression analysis was applied to estimate the association between metabolites level and the risk of hypertension. Age, sex, BMI, total cholesterol, triglyceride, HDL cholesterol, fasting plasma glucose, use of oral glucose-lowering drugs, statins, and antihypertensive drugs were adjusted in regression analysis. RESULTS: Of 50 metabolites, 34 were associated with an increased likelihood of stage 2 hypertension and 5 with a decreased likelihood of stage 2 hypertension. After full adjustment for potential confounders, 5 metabolites were still significant risk markers for stage 2 hypertension including C0 (OR = 0.75; 95%CI: 0.63, 0.90), C12 (OR = 1.18; 95%CI: 1.00, 1.40), C14:1 (OR = 1.20; 95%CI: 1.01, 1.42), C14:2 (OR = 1.19; 95%CI: 1.01, 1.41), and glycine (OR = 0.81; 95%CI: 0.68, 0.96). An index that included glycine and serine also showed significant predictive value for stage 2 hypertension after full adjustment (OR = 0.86; 95%CI: 0.75, 0.98). CONCLUSIONS: Five metabolites were identified as potentially valuable predictors of stage 2 hypertension.


Subject(s)
Autonomic Nervous System Diseases , Hypertension , Humans , Amino Acids , Iran/epidemiology , Autonomic Nervous System Diseases/complications , Glycine , Metabolomics
7.
Metab Brain Dis ; 38(1): 91-107, 2023 01.
Article in English | MEDLINE | ID: mdl-36322277

ABSTRACT

Alzheimer's disease (AD), the most common type of senile dementia, is a chronic neurodegenerative disease characterized by cognitive dysfunction and behavioral disability. The two histopathological hallmarks in this disease are the extraneuronal accumulation of amyloid-ß (Aß) and the intraneuronal deposition of neurofibrillary tangles (NFTs). Despite this, central and peripheral metabolic dysfunction, such as abnormal brain signaling, insulin resistance, inflammation, and impaired glucose utilization, have been indicated to be correlated with AD. There is solid evidence that the age-associated thermoregulatory deficit induces diverse metabolic changes associated with AD development. Brown adipose tissue (BAT) has been known as a thermoregulatory organ particularly vital during infancy. However, in recent years, BAT has been accepted as an endocrine organ, being involved in various functions that prevent AD, such as regulating energy metabolism, secreting hormones, improving insulin sensitivity, and increasing glucose utilization in adult humans. This review focuses on the mechanisms of BAT activation and the effect of aging on BAT production and signaling. Specifically, the evidence demonstrating the effect of BAT on pathological mechanisms influencing the development of AD, including insulin pathway, thermoregulation, and other hormonal pathways, are reviewed in this article.


Subject(s)
Alzheimer Disease , Insulin Resistance , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Amyloid beta-Peptides/metabolism , Glucose/metabolism
8.
Cell Tissue Bank ; 24(1): 1-9, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35871425

ABSTRACT

The field of regenerative medicine (RM) as an innovative technology has the ability to affect the healthcare system. It develops a variety of techniques through stem cell biology, genetics, bioengineering, biomaterial science, and tissue engineering to replace or restore the role of lost, disabled, or aging cells in the human body. However, the field's proficiency has still been underwhelming at the clinical trial level. This could be due to the innovation of such technologies, as well as their incredible nature. Therefore, managing the infrastructure framework for the safe and efficient application of the aforementioned field of science would help in the process of progress. In this context, the current review focuses on how to establish infrastructures for more effective RM.


Subject(s)
Regenerative Medicine , Tissue Engineering , Humans , Regenerative Medicine/methods , Tissue Engineering/methods , Biocompatible Materials , Bioengineering , Stem Cells
9.
Adv Exp Med Biol ; 1409: 83-110, 2023.
Article in English | MEDLINE | ID: mdl-35999347

ABSTRACT

Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.


Subject(s)
Mesenchymal Stem Cells , Tissue Engineering , Biocompatible Materials/therapeutic use , Regenerative Medicine , Mesenchymal Stem Cells/metabolism , Embryonic Stem Cells , Tissue Scaffolds , Dental Pulp
10.
Regen Eng Transl Med ; 9(1): 83-96, 2023.
Article in English | MEDLINE | ID: mdl-35968268

ABSTRACT

Purpose: Organoids are three-dimensional cultures of stem cells in an environment similar to the body's extracellular matrix. This is also a novel development in the realm of regenerative medicine. Stem cells can begin to develop into 3D structures by modifying signaling pathways. To form organoids, stem cells are transplanted into the extracellular matrix. Organoids have provided the required technologies to reproduce human tissues. As a result, it might be used in place of animal models in scientific study. The key goals of these investigations are research into viral and genetic illnesses, malignancies, and extracellular vesicles, pharmaceutical discovery, and organ transplantation. Organoids can help pave the road for precision medicine through genetic editing, pharmaceutical development, and cell therapy. Methods: PubMed, Google Scholar, and Scopus were used to search for all relevant papers written in English (1907-2021). The study abstracts were scrutinized. Studies on the use of stem-cell-derived organoids in regenerative medicine, organoids as 3D culture models for EVs analysis, and organoids for precision medicine were included. Articles with other irrelevant aims, meetings, letters, commentaries, congress and conference abstracts, and articles with no available full texts were excluded. Results: According to the included studies, organoids have various origins, types, and applications in regenerative and precision medicine, as well as an important role in studying extracellular vesicles. Conclusion: Organoids are considered a bridge that connects preclinical studies to clinical ones. However, the lack of a standardized protocol and other barriers addressed in this review, hinder the vast use of this technology. Lay Summary: Organoids are 3D stem cell propagations in biological or synthetic scaffolds that mimic ECM to allow intercellular or matrix-cellular crosstalk. Because these structures are similar to organs in the body, they can be used as research models. Organoids are medicine's future hope for organ transplantation, tumor biobank formation, and the development of precision medicine. Organoid models can be used to study cell-to-cell interactions as well as effective factors like inflammation and aging. Bioengineering technologies are also used to define the size, shape, and composition of organoids before transforming them into precise structures. Finally, the importance of organoid applications in regenerative medicine has opened a new window for a better understanding of biological research, as discussed in this study.

11.
Front Psychiatry ; 13: 911770, 2022.
Article in English | MEDLINE | ID: mdl-35911241

ABSTRACT

Autism spectrum disorder (ASD) refers to a complicated range of childhood neurodevelopmental disorders which can occur via genetic or non-genetic factors. Clinically, ASD is associated with problems in relationships, social interactions, and behaviors that pose many challenges for children with ASD and their families. Due to the complexity, heterogeneity, and association of symptoms with some neuropsychiatric disorders such as ADHD, anxiety, and sleep disorders, clinical trials have not yielded reliable results and there still remain challenges in drug discovery and development pipeline for ASD patients. One of the main steps in promoting lead compounds to the suitable drug for commercialization is preclinical animal testing, in which the efficacy and toxicity of candidate drugs are examined in vivo. In recent years, zebrafish have been able to attract the attention of many researchers in the field of neurological disorders such as ASD due to their outstanding features. The presence of orthologous genes for ASD modeling, the anatomical similarities of parts of the brain, and similar neurotransmitter systems between zebrafish and humans are some of the main reasons why scientists draw attention to zebrafish as a prominent animal model in preclinical studies to discover highly effective treatment approaches for the ASD through genetic and non-genetic modeling methods.

12.
Adv Exp Med Biol ; 1401: 173-189, 2022.
Article in English | MEDLINE | ID: mdl-35856133

ABSTRACT

With the development of numerous advances in science and technologies, medical science has also been updated. Internal medicine is one of the most valuable specialized fields of medical sciences that review a broad range of diseases. Herein, the internal medicine specialist (internist) is obliged to do diagnostic measures to evaluate disease signs and symptoms. In recent times, biomedical sciences as the new emergence science (including cellular and molecular biology, genetics, nanobiotechnology, bioinformatics, biochemistry, etc.) have been capable of providing more specific diagnostic methods together with techniques for better understanding the mechanism of the disease and the best diseases modeling and offering proper therapies. Accordingly, the authors have tried to review the link between biomedical sciences and medicine, particularly internal medicine.


Subject(s)
Biochemistry , Computational Biology , Molecular Biology , Technology
13.
J Diabetes Metab Disord ; 21(1): 889-917, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673462

ABSTRACT

Purpose: Due to growing concerns about the obesity pandemic as a worldwide phenomenon, a global effort has been made for managing it and associated disorders. Accordingly, metabolomics as a promising field of "OMICS" is presented for investigating different molecular pathways in obesity and related disorders through the evaluation of specific metabolites in both animal and human subjects. Herein, the aim of the present study as the first systematic review is to evaluate all available studies about different mechanisms and their biomarkers discovery using metabolomics approaches. Method: The study was designed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using a comprehensive search strategy we searched in databases including; Web of Science, PubMed, and Scopus using specific keywords. Based on predefined inclusion/exclusion criteria study selection has been conducted considering the type of studies, participant, and outcome measures. Quality assessment was done using CASP (Critical Appraisal Skills Programme) checklist followed by data extraction according to a predefined data extraction sheet. Results: Among the articles that resulted from electronic search, a total of 74 articles met our inclusion criteria. The most prevalent studied metabolites were amino acids and lipid derivatives and both targeted and non-targeted approaches were applied for metabolomics studies. Conclusion: This systematic review summarized a wide range of studies regardless of the age, history, language, and type of the study. Further studies are needed to compare the application of emerging methods in the treatment of obesity and related disorders. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-021-00917-w.

14.
Front Genet ; 13: 824451, 2022.
Article in English | MEDLINE | ID: mdl-35154283

ABSTRACT

Cancer is defined as a large group of diseases that is associated with abnormal cell growth, uncontrollable cell division, and may tend to impinge on other tissues of the body by different mechanisms through metastasis. What makes cancer so important is that the cancer incidence rate is growing worldwide which can have major health, economic, and even social impacts on both patients and the governments. Thereby, the early cancer prognosis, diagnosis, and treatment can play a crucial role at the front line of combating cancer. The onset and progression of cancer can occur under the influence of complicated mechanisms and some alterations in the level of genome, proteome, transcriptome, metabolome etc. Consequently, the advent of omics science and its broad research branches (such as genomics, proteomics, transcriptomics, metabolomics, and so forth) as revolutionary biological approaches have opened new doors to the comprehensive perception of the cancer landscape. Due to the complexities of the formation and development of cancer, the study of mechanisms underlying cancer has gone beyond just one field of the omics arena. Therefore, making a connection between the resultant data from different branches of omics science and examining them in a multi-omics field can pave the way for facilitating the discovery of novel prognostic, diagnostic, and therapeutic approaches. As the volume and complexity of data from the omics studies in cancer are increasing dramatically, the use of leading-edge technologies such as machine learning can have a promising role in the assessments of cancer research resultant data. Machine learning is categorized as a subset of artificial intelligence which aims to data parsing, classification, and data pattern identification by applying statistical methods and algorithms. This acquired knowledge subsequently allows computers to learn and improve accurate predictions through experiences from data processing. In this context, the application of machine learning, as a novel computational technology offers new opportunities for achieving in-depth knowledge of cancer by analysis of resultant data from multi-omics studies. Therefore, it can be concluded that the use of artificial intelligence technologies such as machine learning can have revolutionary roles in the fight against cancer.

15.
Adv Exp Med Biol ; 1376: 45-59, 2022.
Article in English | MEDLINE | ID: mdl-34735713

ABSTRACT

For a very long time, viral infections have been considered as one of the most important causes of death and disability around the world. Through the viral infection, viruses as small pathogens enter the host cells and use hosts' biosynthesis machinery to replicate and collect infectious lineages. Moreover, they can modify hosts' metabolic pathways in order to their own purposes. Nowadays (in 2019-2020), the most famous type of viral infection which was caused by a novel type of coronavirus is called COVID-19 disease. It has claimed the lives of many people around the world and is a very serious threat to health. Since investigations of the effects of viruses on host metabolism using metabolomics tools may have given focuses on novel appropriate treatments, in the current review the authors highlighted the virus-host metabolic interactions and metabolomics perspective in COVID-19.


Subject(s)
COVID-19 , Communicable Diseases , Viruses , Humans , Metabolomics , SARS-CoV-2
16.
Cell Tissue Bank ; 23(4): 653-668, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34545506

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent cells which are popular in human regenerative medicine. These cells can renew themselves and differentiate into several specialized cell types including osteoblasts, adipocytes, and chondrocytes under physiological and experimental conditions. MSCs can secret a lot of components including proteins and metabolites. These components have significant effects on their surrounding cells and also can be used to characterize them. This characterization of multipotent MSCs plays a critical role in their therapeutic potential. The metabolic profile of culture media verified by applying matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) techniques. Also, the differentiation and development of MSCs have monitored through culture media metabolome or secretome (secreted metabolites). Totally, 24 potential metabolites were identified. Between them 12 metabolites are unique to BM-MSCs and 5 metabolites are unique to AD-MSCs. Trilineage differentiation including chondrocytes, osteoblasts, and adipocytes, as well as metabolites that are being differentiated, have been shown in different weeks. In the present study, the therapeutic effects of MSCs analyzed by decoding the metabolome for MSCs secretome via metabolic profiling using MALDI-TOF-MS techniques.


Subject(s)
Mesenchymal Stem Cells , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Culture Media/metabolism , Cell Differentiation , Adipocytes
17.
Regen Eng Transl Med ; 8(3): 355-369, 2022.
Article in English | MEDLINE | ID: mdl-34746370

ABSTRACT

Abstract: The severe acute respiratory syndrome coronavirus 2 has led to the worldwide pandemic named coronavirus disease 2019 (COVID-19). It has caused a significant increase in the number of cases and mortalities since its first diagnosis in December 2019. Although COVID-19 primarily affects the respiratory system, neurological involvement of the central and peripheral nervous system has been also reported. Herein, the higher risk of neurodegenerative diseases in COVID-19 patients in future is also imaginable. Neurological complications of COVID-19 infection are more commonly seen in severely ill individuals; but, earlier diagnosis and treatment can lead to better long-lasting results. In this respect, stem cell biotechnologies with considerable self-renewal and differentiation capacities have experienced great progress in the field of neurological disorders whether in finding out their underlying processes or proving them promising therapeutic approaches. Herein, many neurological disorders have been found to benefit from stem cell medicine strategies. Accordingly, in the present review, the authors are trying to discuss stem cell-based biotechnologies as promising therapeutic options for neurological disorders secondary to COVID-19 infection through reviewing neurological manifestations of COVID-19 and current stem cell-based biotechnologies for neurological disorders. Lay Summary: Due to the substantial burden of neurological disorders in the health, economic, and social system of society, the emergence of neurological manifestations following COVID-19 (as a life-threatening pandemic) creates the need to use efficient and modern methods of treatment. Since stem cell-based methods have been efficient for a large number of neurological diseases, it seems that the use of mentioned methods is also effective in the process of improving neurological disorders caused by COVID-19. Hereupon, the current review aims to address stem cell-based approaches as treatments showing promise to neurological disorders related to COVID-19.

18.
Drug Deliv Transl Res ; 12(3): 538-549, 2022 03.
Article in English | MEDLINE | ID: mdl-33677794

ABSTRACT

Different biomaterials have been used as biological dressing for wound regeneration. For many decades, human amniotic membrane graft (AM) has been widely applied for treating acute and chronic wounds. It has minimal toxicity and immunogenicity, supports mesenchymal cell in-growth, improves epidermal cell adherence and proliferation, and finally is inexpensive and readily available. Enrichment of tissue grafts with the stem cells is a new approach to improve their regenerative effects. This animal study aimed at investigating feasibility, safety, and efficacy of tissue-engineered dressings composed of AM and two different types of mesenchymal stem cells (MSCs) in the excisional wound model in rats. Human adipose-derived MSCs (ADMSCs) and placenta-derived MSCs (PLMSCs) were manufactured from the donated adipose and placenta tissues respectively. After cell characterization, MSCs were seeded on acellular AM (AAM) and cultivated for 5 days. Excisional wound model was developed in 24 male Wistar rats that were randomly classified into four groups including control, AAM, ADMSCs + AAM, and PLMSCs + AAM (n = 6 in each group). Tissue-engineered constructs were applied, and photographs were taken on days 0, 7, and 14 for observing the wound healing rates. In days 7 and 14 post-treatment, three rats from each group were euthanized, and wound biopsies were harvested, and histopathologic studies were conducted. The results of wound closure rate, re-epithelialization, angiogenesis, and collagen remodeling demonstrated that in comparison with the control groups, the MSC-seeded AAMs had superior regenerative effects in excisional wound animal model. Between MSCs group, the PLMSCs showed better healing effect. Our data suggested that seeding of MSCs on AAM can boosts its regenerative effects in wound treatment. We also found that PLMSCs had superior regenerative effects to ADMSc in the rat model of excisional wound.


Subject(s)
Amnion , Mesenchymal Stem Cells , Animals , Bandages , Male , Rats , Rats, Wistar , Wound Healing
19.
Adv Exp Med Biol ; 1387: 145-169, 2022.
Article in English | MEDLINE | ID: mdl-34961915

ABSTRACT

Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.


Subject(s)
Drug Discovery , Zebrafish , Animals , Disease Models, Animal , Drug Discovery/methods , Humans , Zebrafish/genetics
20.
J Mol Neurosci ; 72(2): 336-348, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797511

ABSTRACT

Intracerebroventricular (ICV) microinjection of diabetogenic drug streptozotocin (STZ) in rodents consistently produces a model of sporadic Alzheimer's disease (sAD) which is characterized by tau pathology and concomitant cognitive decline, insulin resistance, neuroinflammation, oxidative stress, and mitochondrial malfunction. Paeonol is an active phenolic component in some medicinal plants like Cortex Moutan with neuroprotective efficacy via exerting anti-inflammatory and anti-oxidative effects. This study was conducted to assess beneficial effect of paeonol in amelioration of cognitive deficits in ICV STZ rat model of sAD. STZ (3 mg/kg) was microinjected into the lateral ventricles on days 0 and 2, and paeonol was given p.o. at two doses of 25 (low) or 100 (high) mg/kg from day 0 (post-surgery) till day 24 post-STZ. Cognitive performance was evaluated in different tasks, and oxidative stress- and inflammation-related parameters were measured in addition to immunohistochemical assessment of glial fibrillary acidic protein (GFAP) as a marker of astrocytes. Paeonol at the higher dose ameliorated cognitive deficits in Barnes maze, novel object recognition (NOR) task, Y maze, and passive avoidance test. In addition, paeonol partially reversed hippocampal malondialdehyde (MDA), reactive oxygen species (ROS), total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase, glutathione reductase, tumor necrosis factor α (TNFα), interleukin 6 (IL-6), mitochondrial membrane potential (MMP), myeloperoxidase (MPO), and acetylcholinesterase (AChE) activity. Paeonol treatment was also associated with lower hippocampal immunoreactivity for GFAP. This study showed that paeonol can alleviate cognitive disturbances in ICV STZ rat model of sAD via ameliorating neuroinflammation, oxidative stress, mitochondrial dysfunction, and also through its attenuation of astrogliosis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Acetophenones , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Maze Learning , Mice , Mitochondria/metabolism , Oxidative Stress , Rats , Rats, Wistar , Streptozocin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...